Travelocity.com Data Scraping

Travelocity.com Data Scraping, Web Scraping Travelocity.com , Data Extraction Travelocity.com , Scraping Web Data, Website Data Scraping, Email Scraping Travelocity.com , Email Database, Data Scraping Services, Scraping Contact Information, Data Scrubbing

Friday, 28 November 2014

Scraping SSL Labs Server Test Results With R

    NOTE: Qualys allows automated access to their SSL Server Test site in their T&C’s, and the R fucntion/script provided here does its best to adhere to their guidelines. However, if you launch multiple scripts at one time and catch their attention you will, no doubt, be banned.

This post will show you how to do some basic web page data scraping with R. To make it more palatable to those in the security domain, we’ll be scraping the results from Qualys’ SSL Labs SSL Test site by building an R function that will:

    fetch the contents of a URL with RCurl
    process the HTML page tags with R’s XML library
    identify the key elements from the page that need to be scraped
    organize the results into a usable R data structure

You can skip ahead to the code at the end (or in this gist) or read on for some expository that isn’t in the code’s comments.

Setting up the script and processing flow

We’ll need some assistance from three R packages to perform the scraping, processing and transformation tasks:

library(RCurl) # scraping
library(XML)   # XML (HTML) processing
library(plyr)  # data transformation

If you poke at the SSL Test site with a few different URLs, you’ll see there are three primary inputs to the GET request we’ll need to issue:

    d (the domain)
    s (the IP address to test)
    ignoreMismatch (which we’ll leave as ‘on‘)

You’ll also see that there’s often a delay between issuing a request and getting the results, so we’ll need to build in a GET+check-loop (like the javascript on the page does automagically). Finally, when the results are eventually displayed they are (at least for this example) usually either "Overall Rating" or "Assessment" and, we’ll use that status result in our tests for what to return.

We’ll account for the domain and IP address in the function parameters along with the amount of time we should pause between GET+check attempts. It’s also a good idea to provide a way to pass in any extra curl options (e.g. in the event folks are behind a proxy server and need to input that to make the requests work). We’ll define the function with some default parameters:

get_rating <- function(site="rud.is", ip="", pause=5, curl.opts=list()) {

}

This definition says that if we just call get_rating(), it will

    default to using "rud.is" as the domain (you can pick what you want in your implementation)
    not supply an IP address (which the script will then have to lookup with nsl)
    will pause 5s between GET+check attempts
    pass no extra curl options

Getting into the details

For the IP address logic, we’ll have to test if we passed in an an address string and perform a lookup if not:

# try to resolve IP if not specified; if no IP can be found, return
# a "NA" data frame

  if (ip == "") {

    tmp <- nsl(site)
    if (is.null(tmp)) {
      return(data.frame(site=site, ip=NA, Certificate=NA,
                        Protocol.Support=NA, Key.Exchange=NA,
                        Cipher.Strength=NA)) }
    ip <- tmp
  }

(don’t worry about the return(...) part yet, we’ll get there in a bit).

Once we have an IP address, we’ll need to make the call to the ssllabs.com test site and perform the check loop:

# get the contents of the URL (will be the raw HTML text)
# build the URL with sprintf

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on", site, ip), .opts=curl.opts)

# while we don't find some indication of a completed request,
# pause and try again

while(!grepl("(Overall Rating|Assessment failed)", rating.dat)) {
  Sys.sleep(pause)
  rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on", site, ip), .opts=curl.opts)
}

We can then start making some decisions based on the results:

# if the assessment failed, return a data frame of NA's

if (grepl("Assessment failed", rating.dat)) {

  return(data.frame(site=site, ip=NA, Certificate=NA,
                    Protocol.Support=NA, Key.Exchange=NA,
                    Cipher.Strength=NA))
}

# otherwise, parse the resultant HTML

x <- htmlTreeParse(rating.dat, useInternalNodes = TRUE)

Unfortunately, the results are not “consistent”. While there are plenty of uniquely identifiable <div>s, there are enough differences between runs that we have to be a bit generic in our selection of data elements to extract. I’ll leave the view-source: of a result as an exercise to the reader. For this example, we’ll focus on extracting:

        the overall rating (A-F)
        the “Certificate” score
        the “Protocol Support” score
        the “Key Exchange” score
        the “Cipher Strength” score

There are plenty of additional fields to extract, but you should be able to extrapolate and grab what you want to from the rest of the example.

Extracting the results

We’ll need to delve into XPath to extract the <div> values. We’ll use the xpathSApply function to perform this task. Since there sometimes is a <span> tag within the <div> for the rating and since the rating has a class tag to help identify which color it should be, we use a starts-with selection parameter to just get anything beginning with rating_. If it returns an R list structure, we know we have the one with a <span> element, so we re-issue the call with that extra XPath component.

rating <- xpathSApply(x,"//div[starts-with(@class,'rating_')]/text()", xmlValue)

if (class(rating) == "list") {

  rating <- xpathSApply(x,"//div[starts-with(@class,'rating_')]/span/text()", xmlValue)
}

For the four attributes (and values) we’ll be extracting, we can use the getNodeSet call which will give us all of them into a structure we can process with xpathSApply

labs <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[@class='chartLabel']")

vals <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[starts-with(@class,'chartValue')]")

# convert them to vectors

labs <- xpathSApply(labs[[1]], "//div[@class='chartLabel']/text()", xmlValue)

vals <- xpathSApply(vals[[1]], "//div[starts-with(@class,'chartValue')]/text()", xmlValue)

At this point, labs will be a vector of label names and vals will be the corresponding values. We’ll put them, the original domain and the IP address into a data frame:

# rbind will turn the vector into row elements, with each

# value being in a column

rating.result <- data.frame(site=site, ip=ip,

                            rating=rating, rbind(vals),
                            row.names=NULL)

# we use the labs vector as the column names (in the right spot)    

colnames(rating.result) <- c("site", "ip", "rating",

                              gsub(" ", "\\.", labs))

and return the result:
return(rating.result)
Finishing up

If we run the whole function on one domain we’ll get a one-row data frame back as a result. If we use ldply from the plyr package to run the get_rating function repeatedly on a vector of domains, it will combine them all into one whole data frame. For example:

sites <- c("rud.is", "stackoverflow.com", "er-ant.com")

ratings <- ldply(sites, get_rating)

ratings

##                site              ip rating Certificate Protocol.Support Key.Exchange Cipher.Strength

## 1            rud.is  184.106.97.102      B         100               70           80              90

## 2 stackoverflow.com 198.252.206.140      A         100               90           80              90

## 3        er-ant.com            <NA>   <NA>        <NA>             <NA>         <NA>            <NA>

There are many tweaks you can make to this function to extract more data and perform additional processing. If you make some of your own changes, you’re encouraged to add to the gist (link above & below) and/or drop a note in the comments.

Hopefully you’ve seen how well-suited R is for this type of operation and have been encouraged to use it in your next attempt at some site/data scraping.

library(RCurl)
library(XML)
library(plyr)

 #' get the Qualys SSL Labs rating for a domain+cert

#'

#' @param site domain to test SSL configuration of

#' @param ip address of \code{site} (will resolve it and take\cr

#' first response if not specified, but that may not always work as you expect)

#' @param hide.results ["on"|"off"] should the results show up in the SSL Labs history (default "on")

#' @param pause timeout between tries (default 5s)

#' @param curl.opts options to pass to \code{getURL} i.e. proxy setting

#' @return data frame of results

#'

  get_rating <- function(site="rud.is", ip="", hide.results="on", pause=5, curl.opts=list()) {

# try to resolve IP if not specified; if no IP can be found, return

# a "NA" data frame

if (ip == "") {

tmp <- nsl(site)

if (is.null(tmp)) { return(data.frame(site=site, ip=NA, Certificate=NA,

Protocol.Support=NA, Key.Exchange=NA, Cipher.Strength=NA)) }

ip <- tmp

}

# need to let it actually process the certificate if not already cached

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on&hideResults=%s", site, ip, hide.results), .opts=curl.opts)

while(!grepl("(Overall Rating|Assessment failed)", rating.dat)) {

Sys.sleep(pause)

rating.dat <- getURL(sprintf("https://www.ssllabs.com/ssltest/analyze.html?d=%s&s=%s&ignoreMismatch=on&hideResults=%s", site, ip, hide.results), .opts=curl.opts)

}

if (grepl("Assessment failed", rating.dat)) {

return(data.frame(site=site, ip=NA, Certificate=NA,

Protocol.Support=NA, Key.Exchange=NA, Cipher.Strength=NA))

}

x <- htmlTreeParse(rating.dat, useInternalNodes = TRUE)

# sometimes there is a <span ...> tag in the <div>, which will result in an

# empty list() object being returned. we check for that and handle it

# appropriately.

rating <- xmlValue(x[["//div[starts-with(@class,'rating_')]/text()"]])

if (class(rating) == "list") {

rating <- xmlValue(x[["//div[starts-with(@class,'rating_')]/span/text()"]])

}

# extract the XML objects for the ratings labels & values

labs <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[@class='chartLabel']")

vals <- getNodeSet(x,"//div[@class='chartBody']/div[@class='chartRow']/div[starts-with(@class,'chartValue')]")

# convert them to vectors

labs <- xpathSApply(labs[[1]], "//div[@class='chartLabel']/text()", xmlValue)

vals <- xpathSApply(vals[[1]], "//div[starts-with(@class,'chartValue')]/text()", xmlValue)

# make them into a data frame

rating.result <- data.frame(site=site, ip=ip, rating=rating, rbind(vals), row.names=NULL)

colnames(rating.result) <- c("site", "ip", "rating", gsub(" ", "\\.", labs))

return(rating.result)

}

 sites <- c("rud.is", "stackoverflow.com", "er-ant.com")

ratings <- ldply(sites, get_rating)

ratings

## site ip rating Certificate Protocol.Support Key.Exchange Cipher.Strength

## 1 rud.is 184.106.97.102 B 100 70 80 90

## 2 stackoverflow.com 198.252.206.140 A 100 90 80 90

## 3 er-ant.com <NA> <NA> <NA> <NA> <NA> <NA>

Source: http://www.r-bloggers.com/scraping-ssl-labs-server-test-results-with-r/

Thursday, 27 November 2014

Web Scraping Tools for Non-developers

I recently spoke with a resource-limited organization that is investigating government corruption and wants to access various public datasets to monitor politicians and law firms. They don’t have developers in-house, but feel pretty comfortable analyzing datasets in CSV form. While many public datasources are available in structured form, some sources are hidden in what us data folks call the deep web. Amazon is a nice example of a deep website, where you have to enter text into a search box, click on a few buttons to narrow down your results, and finally access relatively structured data (prices, model numbers, etc.) embedded in HTML. Amazon has a structured database of their products somewhere, but all you get to see is a bunch of webpages trapped behind some forms.

A developer usually isn’t hindered by the deep web. If we want the data on a webpage, we can automate form submissions and key presses, and we can parse some ugly HTML before emitting reasonably structured CSVs or JSON. But what can one accomplish without writing code?

This turns out to be a hard problem. Lots of companies have tried, to varying degrees of success, to build a programmer-free interface for structured web data extraction. I had the pleasure of working on one such project, called Needlebase at ITA before Google acquired it and closed things down. David Huynh, my wonderful colleague from grad school, prototyped a tool called Sifter that did most of what one would need, but like all good research from 2006, the lasting impact is his paper rather than his software artifact.

Below, I’ve compiled a list of some available tools. The list comes from memory, the advice of some friends that have done this before, and, most productively, a question on Twitter that Hilary Mason was nice enough to retweet.

The bad news is that none of the tools I tested would work out of the box for the specific use case I was testing. To understand why, I’ll break down the steps required for a working web scraper, and then use those steps to explain where various solutions broke down.

The anatomy of a web scraper

There are three steps to a structured extraction pipeline:

    Authenticate yourself. This might require logging in to a website or filling out a CAPTCHA to prove you’re not…a web scraper. Because the source I wanted to scrape required filling out a CAPTCHA, all of the automated tools I’ll review below failed step 1. It suggests that as a low bar, good scrapers should facilitate a human in the loop: automate the things machines are good at automating, and fall back to a human to perform authentication tasks the machines can’t do on their own.

    Navigate to the pages with the data. This might require entering some text into a search box (e.g., searching for a product on Amazon), or it might require clicking “next” through all of the pages that results are split over (often called pagination). Some of the tools I looked at allowed entering text into search boxes, but none of them correctly handled pagination across multiple pages of results.

    Extract the data. On any page you’d like to extract content from, the scraper has to help you identify the data you’d like to extract. The cleanest example of this that I’ve seen is captured in a video for one of the tools below: the interface lets you click on some text you want to pluck out of a website, asks you to label it, and then allows you to correct mistakes it learns how to extract the other examples on the page.

As you’ll see in a moment, the steps at the top of this list are hardest to automate.

What are the tools?

Here are some of the tools that came highly recommended, and my experience with them. None of those passed the CAPTCHA test, so I’ll focus on their handling of navigation and extraction.

    Web Scraper is a Chrome plugin that allows you to build navigable site maps and extract elements from those site maps. It would have done everything necessary in this scenario, except the source I was trying to scrape captured click events on links (I KNOW!), which tripped things up. You should give it a shot if you’d like to scrape a simpler site, and the youtube video that comes with it helps get around the slightly confusing user interface.

    import.io looks like a clean webpage-to-api story. The service views any webpage as a potential data source to generate an API from. If the page you’re looking at has been scraped before, you can access an API or download some of its data. If the page hasn’t been processed before, import.io walks you through the process of building connectors (for navigation) or extractors (to pull out the data) for the site. Once at the page with the data you want, you can annotate a screenshot of the page with the fields you’d like to extract. After you submit your request, it appears to get queued for extraction. I’m still waiting for the data 24 hours after submitting a request, so I can’t vouch for the quality, but the delay suggests that import.io uses crowd workers to turn your instructions into some sort of semi-automated extraction process, which likely helps improve extraction quality. The site I tried to scrape requires an arcane combination of javascript/POST requests that threw import.io’s connectors for a lo
op, and ultimately made it impossible to tell import.io how to navigate the site. Despite the complications, import.io seems like one of the more polished website-to-data efforts on this list.

    Kimono was one of the most popular suggestions I got, and is quite polished. After installing the Kimono bookmarklet in your browser, you can select elements of the page you wish to extract, and provide some positive/negative examples to train the extractor. This means that unlike import.io, you don’t have to wait to get access to the extracted data. After labeling the data, you can quickly export it as CSV/JSON/a web endpoint. The tool worked seamlessly to extract a feed from the Hackernews front page, but I’d imagine that failures in the automated approach would make me wish I had access to import.io’s crowd workers. The tool would be high on my list except that navigation/pagination is coming soon, and will ultimately cost money.

    Dapper, which is now owned by Yahoo!, provides about the same level of scraping capabilities as Kimono. You can extract content, but like Kimono it’s unclear how to navigate/paginate.

    Google Docs was an unexpected contender. If the data you’re extracting is in an HTML table/RSS Feed/CSV file/XML document on a single webpage with no navigation/authentication, you can use one of the Import* functions in Google Docs. The IMPORTHTML macro worked as advertised in a quick test.

    iMacros is a tool that I could imagine solves all of the tasks I wanted, but costs more than I was willing to pay to write this blog post. Interestingly, the free version handles the steps that the other tools on this list don’t do as well: navigation. Through your browser, iMacros lets you automate filling out forms, clicking on “next” links, etc. To perform extraction, you have to pay at least $495.

    A friend has used Screen-scraper in the past with good outcomes. It handles navigation as well as extraction, but costs money and requires a small amount of programming/tokenization skills.

    Winautomation seems cool, but it’s only available for Windows, which was a dead end for me.

So that’s it? Nothing works?

Not quite. None of these tools solved the problem I had on a very challenging website: the site clearly didn’t want to be crawled given the CAPTCHA, and the javascript-submitted POST requests threw most of the tools that expected navigation through links for a loop. Still, most of the tools I reviewed have snazzy demos, and I was able to use some of them for extracting content from sites that were less challenging than the one I initially intended to scrape.

All hope is not lost, however. Where pure automation fails, a human can step in. Several proposals suggested paying people on oDesk, Mechanical Turk, or CrowdFlower to extract the content with a human touch. This would certainly get us past the CAPTCHA and hard-to-automate navigation. It might get pretty expensive to have humans copy/paste the data for extraction, however. Given that the tools above are good at extracting content from any single page, I suspect there’s room for a human-in-the-loop scraping tool to steal the show: humans can navigate and train the extraction step, and the machine can perform the extraction. I suspect that’s what import.io is up to, and I’m hopeful they keep the tool available to folks like the ones I initially tried to help.

While we’re on the topic of human-powered solutions, it might make sense to hire a developer on oDesk to just implement the scraper for the site this organization was looking at. While a lot of the developer-free tools I mentioned above look promising, there are clearly cases where paying someone for a few hours of script-building just makes sense.

Source: http://blog.marcua.net/post/74655674340